Did you know...?

This course is part of a collection called 'Building Modern Data Analytics Solutions on AWS', which consists of 4 courses. You have the option to book any of the individual courses separately. If you prefer to attend all 4 courses, you can book the combined course called Building Modern Data Analytics Solutions on AWS.

Overview

In this course, you will learn to build batch data analytics solutions using Amazon EMR, an enterprise-grade Apache Spark and Apache Hadoop managed service. You will learn how Amazon EMR integrates with open-source projects such as Apache Hive, Hue, and HBase, and with AWS services such as AWS Glue and AWS Lake Formation. The course addresses data collection, ingestion, cataloging, storage, and processing components in the context of Spark and Hadoop. You will learn to use EMR Notebooks to support both analytics and machine learning workloads. You will also learn to apply security, performance, and cost management best practices to the operation of Amazon EMR

Read more

Prerequisites

Students with a minimum one-year experience managing open-source data frameworks such as Apache Spark or Apache Hadoop will benefit from this course.

  • We suggest the AWS Hadoop Fundamentals course for those that need a refresher on Apache Hadoop.

We recommend that attendees of this course have:

  • Completed either AWS Technical Essentials or Architecting on AWS
  • Completed either Building Data Lakes on AWS or Getting Started with AWS Glue
Read more

Delegates will learn how to

  • Compare the features and benefits of data warehouses, data lakes, and modern data architectures
  • Design and implement a batch data analytics solution
  • Identify and apply appropriate techniques, including compression, to optimize data storage
  • Select and deploy appropriate options to ingest, transform, and store data
  • Choose the appropriate instance and node types, clusters, auto scaling, and network topology for a particular business use case
  • Understand how data storage and processing affect the analysis and visualization mechanisms needed to gain actionable business insights
  • Secure data at rest and in transit
  • Monitor analytics workloads to identify and remediate problems
  • Apply cost management best practices
Read more

Course Outline

Module A: Overview of Data Analytics and the Data Pipeline

  • Data analytics use cases
  • Using the data pipeline for analytics

Module 1: Introduction to Amazon EMR

  • Using Amazon EMR in analytics solutions
  • Amazon EMR cluster architecture
  • Interactive Demo 1: Launching an Amazon EMR cluster
  • Cost management strategies

Module 2: Data Analytics Pipeline Using Amazon EMR: Ingestion and Storage

  • Storage optimization with Amazon EMR
  • Data ingestion techniques

Module 3: High-Performance Batch Data Analytics Using Apache Spark on Amazon EMR

  • Apache Spark on Amazon EMR use cases
  • Why Apache Spark on Amazon EMR
  • Spark concepts
  • Interactive Demo 2: Connect to an EMR cluster and perform Scala commands using the Spark shell
  • Transformation, processing, and analytics
  • Using notebooks with Amazon EMR
  • Practice Lab 1: Low-latency data analytics using Apache Spark on Amazon EMR

Module 4: Processing and Analyzing Batch Data with Amazon EMR and Apache Hive

  • Using Amazon EMR with Hive to process batch data
  • Transformation, processing, and analytics
  • Practice Lab 2: Batch data processing using Amazon EMR with Hive
  • Introduction to Apache HBase on Amazon EMR

Module 5: Serverless Data Processing

  • Serverless data processing, transformation, and analytics
  • Using AWS Glue with Amazon EMR workloads
  • Practice Lab 3: Orchestrate data processing in Spark using AWS Step Functions

Module 6: Security and Monitoring of Amazon EMR Clusters

  • Securing EMR clusters
  • Interactive Demo 3: Client-side encryption with EMRFS
  • Monitoring and troubleshooting Amazon EMR clusters
  • Demo: Reviewing Apache Spark cluster history

Module 7: Designing Batch Data Analytics Solutions

  • Batch data analytics use cases
  • Building Batch Data Analytics Solutions on AWS
  • Activity: Designing a batch data analytics workflow

Module B: Developing Modern Data Architectures on AWS

  • Modern data architectures

Read more

Why choose QA

Special Notices

Please note: Effective 15th August 2022 the labs for all AWS courses will be delivered through AWS Builder labs. In order to access these labs you will need to have an Amazon account (used for Amazon.com/.co.uk retail). You can choose to use your existing Amazon account or you can elect to set up a new account utilising a new email address (such as Hotmail, Gmail, Yahoo etc etc). You can set up your new Amazon account here.

Please ensure that you have set up this Amazon account set up in advance of attending your class. Your Amazon account credentials will be used to access the AWS Builder lab environment that you will utilise during your course.

In order to access your digital course materials you are required to set up a Gilmore account in advance of attending your course. To do this please follow this link.

Dates & Locations

Frequently asked questions

See all of our FAQs

How can I create an account on myQA.com?

There are a number of ways to create an account. If you are a self-funder, simply select the "Create account" option on the login page.

If you have been booked onto a course by your company, you will receive a confirmation email. From this email, select "Sign into myQA" and you will be taken to the "Create account" page. Complete all of the details and select "Create account".

If you have the booking number you can also go here and select the "I have a booking number" option. Enter the booking reference and your surname. If the details match, you will be taken to the "Create account" page from where you can enter your details and confirm your account.

Find more answers to frequently asked questions in our FAQs: Bookings & Cancellations page.

How do QA’s virtual classroom courses work?

Our virtual classroom courses allow you to access award-winning classroom training, without leaving your home or office. Our learning professionals are specially trained on how to interact with remote attendees and our remote labs ensure all participants can take part in hands-on exercises wherever they are.

We use the WebEx video conferencing platform by Cisco. Before you book, check that you meet the WebEx system requirements and run a test meeting (more details in the link below) to ensure the software is compatible with your firewall settings. If it doesn’t work, try adjusting your settings or contact your IT department about permitting the website.

Learn more about our Virtual Classrooms.

How do QA’s online courses work?

QA online courses, also commonly known as distance learning courses or elearning courses, take the form of interactive software designed for individual learning, but you will also have access to full support from our subject-matter experts for the duration of your course. When you book a QA online learning course you will receive immediate access to it through our e-learning platform and you can start to learn straight away, from any compatible device. Access to the online learning platform is valid for one year from the booking date.

All courses are built around case studies and presented in an engaging format, which includes storytelling elements, video, audio and humour. Every case study is supported by sample documents and a collection of Knowledge Nuggets that provide more in-depth detail on the wider processes.

Learn more about QA’s online courses.

When will I receive my joining instructions?

Joining instructions for QA courses are sent two weeks prior to the course start date, or immediately if the booking is confirmed within this timeframe. For course bookings made via QA but delivered by a third-party supplier, joining instructions are sent to attendees prior to the training course, but timescales vary depending on each supplier’s terms. Read more FAQs.

When will I receive my certificate?

Certificates of Achievement are issued at the end the course, either as a hard copy or via email. Read more here.

Contact Us

Please contact us for more information